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Abstract
In the general case the Hamiltonian system with three degrees of freedom
describing the motion of a rigid body in two constant forces does not admit
any symmetry groups. Yehia (1986 Mech. Res. Commun. 13 169–72) found
conditions under which the equations of motion of the Kowalevski-type top
have an integral linear in angular velocities in addition to the energy integral.
Later it was noticed that such an integral exists for the same force field for
any dynamically symmetric top with the center of force applications in the
equatorial plane. Thus, the corresponding system is the natural mechanical
system with S1-symmetry and Smale’s program of topological analysis can be
fulfilled. Here we construct the bifurcation diagrams of the momentum map for
this system and present various types of diagrams depending on one physical
parameter.

PACS numbers: 45.20.Jj, 45.40.Cc
Mathematics Subject Classification: 70E17, 70G40

1. Introduction

The notion of a mechanical system with symmetry was introduced by Smale [1]. Let a Lie
group G (the symmetry group) act on a smooth Riemannian manifold M (the configuration
space) and, with tangent maps, on T M (the phase space) preserving the given potential
U : M → R and the kinetic energy K : T M → R (2K(v) = |v|2). It is supposed that this
action generates the principal G-bundle M → N = M/G. Let us call such a symmetry a
regular one. For regularity it is sufficient that the action of G on M is proper and free.

The symmetry gives rise to the integral map L × H : T M → R
k (k = dim G + 1) called

the momentum map. Here H = K + U ◦ pM is the total energy (the Hamiltonian function of
the system) and L is the momentum integral [1] generalizing the classical notion of a cyclic
integral.
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For the systems with symmetry Smale formulated the problem of investigation of the
phase topology and proved a series of general theorems about the structure of bifurcation
diagrams and the topology of integral manifolds,

Jh,� = {ζ ∈ T M : H(ζ) = h,L(ζ ) = �}, Ĵ h,� = {ζ ∈ T N : H�(ζ ) = h}, (1.1)

of the initial and reduced systems. These statements essentially use the symmetry’s regularity
(the regularity of the integral L as a function on T M) and the possibility of defining globally
the so-called reduced potential U� : N → R.

In the dynamics of a rigid body (or, in a more general case, of a gyrostat) the regular
symmetry takes place for the problems with axially symmetric potentials. The classical
examples are the potentials of the gravity force and of the central Newtonian force. Here
M = SO(3), G = S1, N = S2. The latter manifold is called the Poisson sphere and
represents all possible positions of the force symmetry axis unit vector with respect to the
body. Bifurcation diagrams of the arising momentum map and the corresponding phase
topology were investigated by many authors. It is necessary to note here the article of Katok
[2], which was published along with the Russian translation of Smale’s work, the series of
basic publications of Tatarinov [3, 4]. Gashenenko [5–7] gave the most complete description
of the variety of existing cases. The problem of full classification of all diagrams and integral
manifolds for the classical axially symmetric forces appeared to be verycomplex due to the
large number of independent essential parameters.

What happens if the symmetry group action is proper but not free? The orbit space then
does not become a manifold but a stratified space [8]. This kind of symmetries are considered
in connection with Hamiltonian systems having non-holonomic constraints and nonlinear
control systems [9, 10]. The momentum integral in this case is not regular everywhere and the
reduced potential on the orbit space is not defined globally. Nevertheless, the results of Smale
remain applicable for the regular values of the integral L.

The corresponding examples in the rigid body dynamics were not yet considered, though
the problem with a singular symmetry is known. It is the case found by Yehia [11] for the
top of Kowalevski type rotating in a double homogeneous force field of the special sort. Now
it is known that the Yehia integral is of more general origin and it exists in the wide class of
problems of motion of a dynamically symmetric gyrostat [12].

Let G = S1 be the subgroup in M = SO(3). To be definite, suppose that it is the group
of rotations around the third coordinate axis G = {T (τ)}:

T (τ) =
∥∥∥∥∥∥

cos τ sin τ 0
−sin τ cos τ 0

0 0 1

∥∥∥∥∥∥ .

Consider the action of G on M by the inner automorphisms

gτ (Q) = T (τ)QT (−τ), Q ∈ SO(3). (1.2)

This action is proper (because SO(3) is compact) but not free since all the points of the
subgroup G itself are fixed points. Take the orbit space of the action (1.2), identify all
fixed points with one point F and introduce the quotient topology. Thereby the obtained
set N is homeomorphic to S2, although the fibre bundle M → N is not locally trivial in
the neighborhood of F ∈ N . The elements of this sphere do not have any clear physical
interpretation as it was with the Poisson sphere. But one can easily introduce the spherical
coordinates on N expressed, for example, in terms of the appropriately chosen Euler angles.
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Usually, the rigid body configuration is represented by the direction cosine matrix Q. The
rows of Q are the components of the vectors of some orthonormal inertial basis with respect
to the so-called moving frame

Oe1e2e3. (1.3)

Here O is the body’s point fixed in space, ej (j = 1, 2, 3) are unit mutually orthogonal vectors
fixed in the body. Then the action (1.2) expanded to T SO(3) with tangent maps preserves the
kinetic energy provided that the axis Oe3 is the symmetry axis of the inertia tensor I at the
point O (the axis of dynamic symmetry).

Let α, β be independent vectors fixed in space. We represent these vectors by their
components in the basis (1.3). Then the potential energy can be expressed as a function of
α, β. In the linear approximation one can write

U = −(r1 · α + r2 · β), (1.4)

where r1, r2 are vectors fixed in the body, the dot stands for the standard scalar product in
R

3. It is the potential of a superposition of two force fields with the constant intensities α, β.
This field is called a double homogeneous field. The function (1.4) will be preserved by the
transformations (1.2) if we suppose that

r1 = e1, r2 = e2, (1.5)

|α| = |β|, α · β = 0. (1.6)

The corresponding momentum integral (the Hamilton function of the group action) has the
form

L = M · (γ − |α|2e3), (1.7)

where M is the kinetic momentum vector and γ = α × β. The integral (1.7) was first found
by Yehia [11] for the generalized Kowalevski case in which the principal moments of inertia
satisfy the ratio 2:2:1. But we see that this integral exists for any dynamically symmetric top
satisfying (1.5) and (1.6). Let n denote the ratio of the equatorial inertia moment to the axial
one. The value n is therefore the unique essential dimensionless parameter of this problem.

All singular points of the action of G on T M lie on the zero level of the integral L.
Therefore, for any non-zero constant �, we obtain the principal G-bundle

L−1(�) = {ζ ∈ T M : L(ζ ) = �} → T (N\{F }) ∼= T R
2.

The reduced system is then defined in the usual way; the integral manifolds (1.1) are constructed
by Smale’s method. The classification of integral manifolds is based on the study of bifurcation
diagrams of corresponding momentum maps.

In the present work we construct a one-parameter family of bifurcation diagrams for a class
of problems with potential functions (1.4) admitting the symmetry (1.2) with singularities.
We point out the corresponding critical motions of the top. Also the values of the parameter
n are found which separate different types of diagrams. These values may be the source of
some partial integrable cases. Possible ways of further investigation and generalizations are
discussed.

2. Parametrical reduction of equations of motion and first integrals

The problem of motion of a rigid body in force fields with potentials of the type (1.4) was first
formulated in the fundamental work of Bogoyavlensky [13]. The physical model is a heavy
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magnet moving in the gravitational and the constant magnetic fields. The equations of motion
referred to the moving frame are

dM

dt
= M × ω + r1 × α + r2 × β,

dα

dt
= α × ω,

dβ

dt
= β × ω.

(2.1)

Here ω = MI−1 is the angular velocity. The vectors α, β (the fields intensities) are constant
in space as shown by the second group of equations (2.1). The vectors r1, r2 constant in the
body can be treated as the radius vectors of the center of the field applications. In the future it
is convenient to consider all vectors as rows. Then tensors are placed at the right of vectors.

The restriction of system (2.1) to any non-degenerate common level P 6(a, b, c) of three
geometrical integrals

|α|2 = a2, |β|2 = b2, α · β = c (|c| < ab) (2.2)

in R
9(α, β, M) is Hamiltonian with three degrees of freedom with respect to the Lie–Poisson

brackets [13] having the geometrical integrals as Casimir functions. The Hamilton function is

H = 1
2M · ω − r1 · α − r2 · β. (2.3)

Choose a basis of the principal inertia axes for the moving frame (1.3). Suppose that the
inertia tensor has the symmetry axis Oe3, the ratio n of the equatorial inertia moment to the
axial one is arbitrary, the radius vectors of the centers of the fields application are also arbitrary
with the only condition that they are parallel to the equatorial plane

r1 · e3 = 0, r2 · e3 = 0. (2.4)

Let D be a non-degenerate 2 × 2-matrix. The transformation∥∥∥∥r1

r2

∥∥∥∥ �→ D

∥∥∥∥r1

r2

∥∥∥∥ ,

∥∥∥∥α

β

∥∥∥∥ �→ (D−1)T
∥∥∥∥α

β

∥∥∥∥ , M �→ M

preserves (2.1) and (2.3), thus leading to an equivalent system. Constant symmetric matrices

R =
∥∥∥∥r1 · r1 r1 · r2

r2 · r1 r2 · r2

∥∥∥∥ , A =
∥∥∥∥α · α α · β

β · α β · β

∥∥∥∥
−1

change as follows: R �→ DRDT , A �→ DADT . There exists D ∈ GL(2, R) such that R
becomes the identity matrix and A becomes diagonal (c = 0). Obviously, the property (2.4)
also holds for the new orthonormal pair r1, r2. Then r1, r2 can be chosen as the principal
inertia basis in the equatorial plane giving the relations (1.5). Thus, we bring the pairs r1, r2

and α, β, respectively, to orthonormal and orthogonal ones. This process was first presented
in [14] and is known as the parametrical reduction for two constant fields.

Suppose that after the reduction in addition to the fact of mutual orthogonality of α
and β, we obtain a = b. Then we come to the conditions (1.6) without the constraints of
Kowalevski type for the moments of inertia. The action (1.2) with respect to the variables
α, β, M becomes

gτ

⎛
⎝

∥∥∥∥∥∥
α

β

M

∥∥∥∥∥∥
⎞
⎠ = T (τ)

∥∥∥∥∥∥
α

β

M

∥∥∥∥∥∥ T (−τ). (2.5)

It preserves system (2.1), the Hamilton function H and also the time-invariant manifold
P 6(a, a, 0). The corresponding momentum integral coincides with (1.7) [12].
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Choose in (2.1), (2.2) the measurement units to obtain I = diag{n, n, 1}, a = 1. From
now on, we write P6 for P 6(1, 1, 0). The first integrals of (2.1) on P6 are

H = 1
2

[
n
(
ω2

1 + ω2
2

)
+ ω2

3

] − α1 − β2,

L = n[ω1(α2β3 − α3β2) + ω2(α3β1 − α1β3)] + ω3(α1β2 − α2β1 − 1).

For given α, β let Q be the matrix with rows α, β, α × β. Obviously, the map
(α, β, M) �→ (Q, ω) is the diffeomorphism of P6 onto T SO(3). System (2.1) restricted
to P6 is therefore a natural mechanical system on SO(3) with S1-symmetry having the set of
singular points α × β = e3. Denote by � the bifurcation diagram of the momentum map

J = L × H : P 6 → R
2.

Recall that by definition � consists of the points (�, h) ∈ R
2 over which J fails to be locally

trivial. Thus, when (�, h) crosses �, the integral manifolds (1.1) undertake topological
changes. Therefore, finding � is a necessary part of the topological analysis of the problem.
Due to the compact character of the function H, the diagram � coincides with the set of critical
values of J. First, we discuss the set of critical points of the integrals L and H. In the case of
regular symmetry this set is trivial; it contains only the possible equilibria of the top. As it is
shown in the next section, the points of singularity add some other solutions.

3. Critical points of the first integrals

We use the change of variables first introduced in [15] and generalizing the change of
Kowalevski to the case of two constant fields

x1 = (α1 − β2) + i(α2 + β1), x2 = (α1 − β2) − i(α2 + β1),

y1 = (α1 + β2) + i(α2 − β1), y2 = (α1 + β2) − i(α2 − β1),

z1 = α3 + iβ3, z2 = α3 − iβ3,

w1 = ω1 + iω2, w2 = ω1 − iω2,

w3 = ω3.

(3.1)

Here i2 = −1. Conditions (2.2) on P6 take the form

z2
1 + x1y2 = 0, z2

2 + x2y1 = 0, x1x2 + y1y2 + 2z1z2 = 4. (3.2)

Introduce the variables x, y, z such that

x2 = x1x2, y2 = y1y2, z2 = z1z2,

and apply the following agreement about the signs

x � 0, sgn y = sgn Re(yi). (3.3)

Then

z2 = ±xy, (x ± y)2 = 4, x ∈ [0, 2]. (3.4)

While investigating critical points of various functions on P6, in order to avoid the
undefined Lagrange multipliers for constraints (3.2), we use the equations proposed in the
work [16].

Lemma. Let f be a smooth function of the complex variables (3.1). The critical points of the
restriction of f to the submanifold defined by (3.2) are described by the system of equations

∂w1f = 0, ∂w2f = 0, ∂w3f = 0,(
2z2∂x2 + 2z1∂y2 − x1∂z1 − y1∂z2

)
f = 0,(

2z1∂x1 + 2z2∂y1 − x2∂z2 − y2∂z1

)
f = 0,(

x1∂x1 − x2∂x2 + y1∂y1 − y2∂y2

)
f = 0.

(3.5)

5
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Denote by C the set of critical points of J. Then C = C0 ∪ C1, where

Ci = {ζ ∈ P 6 : rank J (ζ ) = i}.
First consider the critical points of the Hamilton function H, which are the equilibria of

system (2.1). Equations (3.5) with f = H give

w1 = w2 = w3 = 0, z1 = z2 = 0, y1 = y2.

It follows from (3.4) that in this case

xy = 0. (3.6)

If x = 0, then y1 = y2 = ±2. We obtain two equilibria

ω = 0, α = e1, β = e2;
ω = 0, α = −e1, β = −e2.

It is easily checked that both of them are non-degenerate; the first equilibrium is stable, while
the second one is unstable. Corresponding values of the first integrals give two points on the
(�, h)-plane, P−(0,−2) and P+(0, 2). If in (3.6) we take y = 0, then the values of x1, x2

remain arbitrary up to the condition x1x2 = 4. Therefore, we obtain the circle of degenerate
neutral equilibria giving the point P0(0, 0) on the (�, h)-plane. From the physical point of
view this set of equilibria consists of all body’s configurations such that the equatorial plane
of the top coincides with the plane Oαβ and the latter basis is of the opposite orientation to
the basis Oe1e2; the rotating moment of the forces e1 × α + e2 × β is then identically zero
(compare with the results of [17] for three constant fields).

To find the critical points of L, write equations (3.5) with f = L:

x2z1 − y2z2 = 0, y1z1 − x1z2 = 0, x1x2 − y1y2 = −4,

2nw1 + (y1z1 − x1z2)w3 = 0, 2nw2 + (y2z2 − x2z1)w3 = 0.

This system together with (3.2) yields

w1 = w2 = 0, z1 = z2 = 0, x1 = x2 = 0, y1y2 = 4.

Let y1 = 2 exp(−iψ) and y2 = 2 exp(iψ). Then from (3.1), (2.1) we have

α = e1 cos ψ − e2 sin ψ, β = e1 sin ψ + e2 cos ψ,

ω1 = ω2 = 0, ω3 = ψ̇, ψ̈ = −2 sin ψ.
(3.7)

This system describes the pendulum type motions about the axis Oγ = Oe3. The
corresponding values of the integrals are

� = 0, h = 1
2ω2

3 − 2 cos ψ � −2.

Note that the set of points satisfying (3.7) includes two non-degenerate equilibria, but does
not contain the circle of degenerate equilibria. Therefore, the set C0 consists of exactly two
points of the phase space P6. It is natural to expect the existence of non-trivial motions with
γ ≡ −e3 in addition to the set of degenerate equilibria. We see that this family of motions, if
exists, is not critical for either of the first integrals H,L. We consider it in the next section.

4. Generic critical motions and integral values

The points of the set C not critical for either of the integrals H,L form critical motions of the
generic type. These motions are periodic trajectories of system (2.1) obtained as the orbits of
the action gτ with τ = σ t (σ = const). Therefore, the corresponding expressions (3.7) give

6
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the analytical solutions for this type of motions. This part of C is described by system (3.5)
with f = H − σL. The first three equations give

w1 = − 1
2 (y1z1 − x1z2)σ, w2 = − 1

2 (y2z2 − x2z1)σ, w3 = − 1
4 (x2 − y2 + 4)σ.

(4.1)

Eliminating wj in the remaining equations, we obtain

y1 = y2, (4.2)

x1z2u − (y1u − 8)z1 = 0, x2z1u − (y2u − 8)z2 = 0. (4.3)

Here for brevity we put

u = [4 − (n − 1)(x2 − y2)]σ 2. (4.4)

Note that according to (4.2) and (3.3), y = y1 = y2.
First, suppose that z1 = z2 = 0. Then from (4.1) we get w1 = w2 = 0 and it follows

from (3.4) that either x = 0 or y = 0. If x = 0, then y2 = 4 and the last equation (4.1)
gives w3 = 0. These are the two non-degenerate equilibria studied above. If, in turn, x 	= 0,
then y = 0, x = 2. The component w3 remains arbitrary. For the variables in (2.1), we
have γ = −e3, ω = 2σe3. These motions are permanent rotations about the third inertia
axis, which stays orthogonal to the plane of the forces while Oe1e2 and Oαβ define opposite
orientations. The values of the first integrals h = 2σ 2, � = 4σ fill the parabola h = �2/8.

Now consider the case z1z2 	= 0. Express the first integrals in variables (3.1):

L = n

4
[(x2z1 − y2z2)w1 + (x1z2 − y1z1)w2] − 1

4
(x2 − y2 + 4)w3,

H = 1

2

(
nw1w2 + w2

3

) − 1

2
(y1 + y2).

Then from (4.1), (4.2), (3.4) we get the values

� = σ

16
{16 + 8[(n + 1)x2 + (n − 1)y2] − (2n − 1)(x2 − y2)2},

h = −y +
σ

2
�,

y = ±(2 − x), x ∈ [0, 2].

(4.5)

Non-zero solutions of (4.3) with respect to z1, z2 exist if

[(x + y)u − 8][(x − y)u + 8] = 0.

Hence, eliminating u in (4.4), we obtain

σ 2 = sgn y

n − (n − 1)x
or σ 2 = sgn y

(1 − x)[n − (n − 1)x]
.

These expressions together with (4.5) define �, h on the bifurcation diagram as functions of
one parameter x. The admissible values of x are cut from the basic segment [0, 2] by the
corresponding condition σ 2(x) � 0.

5. Bifurcation diagram

Denote
ϕ0(x) = x[2n − (n − 1)x],

ϕ1(x) = n − (n − 1)x, ϕ2(x) = (1 − x)ϕ1(x),

h1(x) = −5

2
+

3

2
x +

n + x

2ϕ1(x)
, h2(x) = −5

2
+ x +

n + x

2ϕ2(x)
.

(5.1)

7
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The next theorem summarizes the above results.

Theorem. The bifurcation diagram � of the momentum map for the dynamically symmetric
top in S1-symmetric pair of constant fields consists of the following subsets in the (�, h)-plane:

δ0 = {P−, P+, P0}, δ1 = {� = 0 : h � −2},

δ2 =
{
h = 1

8
�2 : � ∈ R

}
,

δ3 =
{
� = ± ϕ0(x)√

ϕ1(x)
, h = h1(x) : x ∈ I3

}
,

δ4 =
{
� = ± ϕ0(x)√

ϕ2(x)
, h = h2(x) : x ∈ I4

}
,

δ5 =
{
� = ± ϕ0(x)√−ϕ1(x)

, h = −h1(x) : x ∈ I5

}
,

δ6 =
{
� = ± ϕ0(x)√−ϕ2(x)

, h = −h2(x) : x ∈ I6

}
,

where

I3 =
⎧⎨
⎩

[0, 2], n < 2[
0,

n

n − 1

]
, n � 2

, I4 =

⎧⎪⎨
⎪⎩

[0, 2), n � 2

[0, 1) ∪
(

n

n − 1
, 2

]
, n > 2

,

I5 =

⎧⎪⎨
⎪⎩

∅, n � 2(
n

n − 1
, 2

]
, n > 2

, I6 =

⎧⎪⎨
⎪⎩

(1, 2], n < 2(
1,

n

n − 1

)
, n � 2

.

(5.2)

Obviously, δ0 ⊂ δ1. Despite this fact, we emphasize the set δ0 of three points generated
by the body equilibria. Note that the parameter x on the curves δ3–δ6 is equal to the value√

(α1 − β2)2 + (α2 + β1)2 constant along each critical trajectory. Therefore, this expression
can be taken as the partial integral generating the set of critical motions.

6. Examples of diagrams with respect to the physical parameter

The system considered, its momentum map and the bifurcation diagram described by the
above theorem depend on one dimensionless parameter n expressing the ratio of two different
principal moments of inertia. It follows immediately from expressions (5.2) for the admissible
segments of x that the value n = 2 corresponding to the integrable case of Yehia separates
principally different types of diagrams. In the case n < 2, the diagram does not change
qualitatively. Even in the case n = 1, when some obvious degenerations take place in (5.1),
topologically the diagram is the same as at close enough values of n. A typical diagram for
n < 2 is shown in figure 1 (due to the symmetry with respect to the h-axis, we illustrate only
the part � � 0).

For the values n > 2 there exist several types of bifurcation diagrams. They differ by
the number of knots (points of self-intersection of the smooth segments, cusps, etc.) and
chambers (connected components of the set R

2\�). Two diagrams for the case n > 2 along
with the enlarged fragments are shown in figure 2. Here we take as typical examples the
values (a) n = 2.3; (b) n = 4.

The main separating values of n can be established analytically. Consider, for example,
the point Q1 of the intersection of the curve δ2 with the first branch of δ4 (x ∈ [0, 1)). It is

8
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Figure 1. The bifurcation diagram for n < 2.

(a) (b)

Figure 2. The bifurcation diagrams for n > 2.

shown in figure 2(a). One can see that during the passage from the chosen case (a) to the
case (b), the point Q1 disappears. Denote by n∗ the corresponding separating value of the
parameter n. To find n∗, note that on δ4 the intersection with δ2 is defined by the root of
the polynomial

P(x) = (n − 1)3x3 − 2(n − 1)(n + 5)x2 + 4(5n − 2)x − 8n

on the half-interval [0, 1). Since P(0) = −8n and P(1) = −(n + 1)(n − 3), the
intersection exists for all n < n∗ = 3. The resultant of P(x) and P ′(x) equals
256(n−1)4(n−3)(n4 −5n3 + 18n2 + 2n+ 11) and does not vanish if n > 3. Therefore, in this
range of n, P(x) has a unique real root which is always greater than 1. Thus, the intersection
point cannot appear again for n > 3.

In figure 2 we also note that point Q2 (the meeting point of three curves δ2, δ5 and the
second branch of δ4) crosses the first branch of δ4 at some n. In fact, for such n we have
Q2 = Q1. The coordinates of Q2 are easily found from the equations of δ4, δ5 with x = 2:

l = 4√
n − 2

, h = 2

n − 2
.
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Suppose Q2 ∈ δ4 for x 	= 2; eliminate x to obtain the equation in n

n4 − 3n3 − 5n2 + 20n − 11 = 0,

which has exactly four real roots. The separating case Q2 = Q1 is generated by the largest
root n ≈ 2.538.

Finally, in addition to the value n = 2, which corresponds to the globally integrable
Yehia case, we find two more values of n generating the topological transformations of the
bifurcation diagrams. In particular, the singular value is n = 3. It is possible that this fact
reflects the existence of some partial integrability.

7. Summary

In this work we present the family of mechanical systems with three degrees of freedom
admitting the S1-symmetry with non-empty set of singular points. We obtain the equations
of the bifurcation diagrams of the corresponding momentum maps. Some examples of the
diagrams transformations are given, which show that the problem of complete classification
of the diagrams with respect to the essential dimensionless parameter n can be non-trivial.

It follows from the works [11, 18, 19] that further generalizations exist for the motion
of a dynamically symmetric gyrostat in the double homogeneous force field. The bifurcation
diagrams will then depend on two physical parameters.

If we exclude from the phase space the critical stratified manifold L = 0, then the
remaining system is reducible to the family of systems with two degrees of freedom marked
by the constant non-zero value of L. The configuration space of each such system (the punctured
two-dimensional sphere) is diffeomorphic to R

2. The reduced potential is easily found using,
for example, the Euler angles. To obtain the description of the integral manifolds, one needs
to calculate the indices of all its critical points. The critical points themselves are in fact found
above, but the topological analysis is not considered here. It is planned to present in the future
for the gyrostat having this kind of symmetry.

In the case of Yehia (n = 2), the initial system admits one more integral K found by
Bogoyavlensky [13] and generalizing the Kowalevski integral. Therefore, it is interesting to
investigate the bifurcation diagram of the integral map

H × L × K : P 6 → R
3. (7.1)

This diagram should be obtained as a degeneration of the general diagrams of the Kowalevski–
Reyman–Semenov-Tian-Shansky top [18] built in [12, 14] according to the arising connection
of the generalized area integral with the integrals H and L. Note that this degeneration is not
straightforwardly obtained. Up to the present moment the only result here deals with the
intersection of the Yehia case and the partial integrable case pointed out by Bogoyavlensky
on the invariant manifold M4 = {K = 0}. Then the extra partial Bogoyavlensky integral
coincides with the Yehia integral. The bifurcation diagram of the restriction of the map H ×L

to M4 and the phase topology of the induced system were studied in the work [20]. It was shown
that in this case M4 is not smooth. The non-smooth integral manifolds with self-intersections
were revealed. The investigation of the map (7.1) will give the possibility of describing the
three-dimensional Liouville foliation in the Yehia case, which includes the non-trivial integral
manifold transformations found in [20] as bifurcations inside critical subsystems.
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